skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Meile, Christof"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Even though sediment macrofauna are widespread in the global seafloor, the influence of these fauna on microbial communities that drive sediment biogeochemical cycles remains poorly understood. According to recent field investigations, macrofaunal activities control bacterial and archaeal community structure in surface sediments, but the inferred mechanisms have not been experimentally verified. Here we use laboratory microcosms to investigate how activities of two major polychaete guilds, the lugworms, represented byAbarenicola pacifica, and the clamworms, represented byNereis vexillosa, influence microbial communities in coastal sediments.A. pacificatreatments show >tenfold increases in microbial cell-specific consumption rates of oxygen and nitrate, largely due to the strong ventilation activity ofA. pacifica. While ventilation resulted in clearly elevated percentages of nitrifying archaea (Nitrosopumilusspp.) in surface sediments, it only minorly affected bacterial community composition. By comparison, reworking – mainly by deposit-feeding ofA. pacifica– had a more pronounced impact on microorganismal communities, significantly driving down abundances of Bacteria and Archaea. Within the Bacteria, lineages that have been linked to the degradation of microalgal biomass (e.g., Flavobacteriaceae and Rhodobacteraceae), were especially affected, consistent with the previously reported selective feeding ofA. pacificaon microalgal detritus. In contrast,N. vexillosa, which is not a deposit feeder, did not significantly influence microbial abundances or microbial community structure. This species also only had a relatively minor impact on rates of oxygen and nitrogen cycling, presumably because porewater exchanges during burrow ventilation by this species were mainly restricted to sediments immediately surrounding the burrows. Collectively our analyses demonstrate that macrofauna with distinct bioturbation modes differ greatly in their impacts on microbial community structure and microbial metabolism in marine sediments. 
    more » « less
  2. Salt marshes play a crucial role in coastal biogeochemical cycles and provide unique ecosystem services. Salt marsh biomass, which can strongly influence such services, varies over time in response to hydrologic conditions and other environmental drivers. We used gap-filled monthly observations ofSpartina alternifloraaboveground biomass derived from Landsat 5 and Landsat 8 satellite imagery from 1984-2018 to analyze temporal patterns in biomass in comparison to air temperature, precipitation, river discharge, nutrient input, sea level, and drought index for a southeastern US salt marsh. Wavelet analysis and ensemble empirical mode decomposition identified month to multi-year periodicities in both plant biomass and environmental drivers. Wavelet coherence detected cross-correlations between annual biomass cycles and precipitation, temperature, river discharge, nutrient concentrations (NOxand PO43–) and sea level. At longer periods we detected coherence between biomass and all variables except precipitation. Through empirical dynamic modeling we showed that temperature, river discharge, drought, sea level, and river nutrient concentrations were causally connected to salt marsh biomass and exceeded the confounding effect of seasonality. This study demonstrated the insights into biomass dynamics and causal connections that can be gained through the analysis of long-term data. 
    more » « less
  3. IntroductionDissolved organic matter (DOM) composition varies over space and time, with a multitude of factors driving the presence or absence of each compound found in the complex DOM mixture. Compounds ubiquitously present across a wide range of river systems (hereafter termed core compounds) may differ in chemical composition and reactivity from compounds present in only a few settings (hereafter termed satellite compounds). Here, we investigated the spatial patterns in DOM molecular formulae presence (occupancy) in surface water and sediments across 97 river corridors at a continental scale using the “Worldwide Hydrobiogeochemical Observation Network for Dynamic River Systems—WHONDRS” research consortium. MethodsWe used a novel data-driven approach to identify core and satellite compounds and compared their molecular properties identified with Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS). ResultsWe found that core compounds clustered around intermediate hydrogen/carbon and oxygen/carbon ratios across both sediment and surface water samples, whereas the satellite compounds varied widely in their elemental composition. Within surface water samples, core compounds were dominated by lignin-like formulae, whereas protein-like formulae dominated the core pool in sediment samples. In contrast, satellite molecular formulae were more evenly distributed between compound classes in both sediment and water molecules. Core compounds found in both sediment and water exhibited lower molecular mass, lower oxidation state, and a higher degree of aromaticity, and were inferred to be more persistent than global satellite compounds. Higher putative biochemical transformations were found in core than satellite compounds, suggesting that the core pool was more processed. DiscussionThe observed differences in chemical properties of core and satellite compounds point to potential differences in their sources and contribution to DOM processing in river corridors. Overall, our work points to the potential of data-driven approaches separating rare and common compounds to reduce some of the complexity inherent in studying riverine DOM. 
    more » « less
  4. Giovannoni, Stephen J. (Ed.)
    ABSTRACT About 382 Tg yr −1 of methane rising through the seafloor is oxidized anaerobically (W. S. Reeburgh, Chem Rev 107:486–513, 2007, https://doi.org/10.1021/cr050362v ), preventing it from reaching the atmosphere, where it acts as a strong greenhouse gas. Microbial consortia composed of anaerobic methanotrophic archaea and sulfate-reducing bacteria couple the oxidation of methane to the reduction of sulfate under anaerobic conditions via a syntrophic process. Recent experimental studies and modeling efforts indicate that direct interspecies electron transfer (DIET) is involved in this syntrophy. Here, we explore a fluorescent in situ hybridization-nanoscale secondary ion mass spectrometry data set of large, segregated anaerobic oxidation of methane (AOM) consortia that reveal a decline in metabolic activity away from the archaeal-bacterial interface and use a process-based model to identify the physiological controls on rates of AOM. Simulations reproducing the observational data reveal that ohmic resistance and activation loss are the two main factors causing the declining metabolic activity, where activation loss dominated at a distance of <8 μm. These voltage losses limit the maximum spatial distance between syntrophic partners with model simulations, indicating that sulfate-reducing bacterial cells can remain metabolically active up to ∼30 μm away from the archaeal-bacterial interface. Model simulations further predict that a hybrid metabolism that combines DIET with a small contribution of diffusive exchange of electron donors can offer energetic advantages for syntrophic consortia. IMPORTANCE Anaerobic oxidation of methane is a globally important, microbially mediated process reducing the emission of methane, a potent greenhouse gas. In this study, we investigate the mechanism of how a microbial consortium consisting of archaea and bacteria carries out this process and how these organisms interact with each other through the sharing of electrons. We present a process-based model validated by novel experimental measurements of the metabolic activity of individual, phylogenetically identified cells in very large (>20-μm-diameter) microbial aggregates. Model simulations indicate that extracellular electron transfer between archaeal and bacterial cells within a consortium is limited by potential losses and suggest that a flexible use of electron donors can provide energetic advantages for syntrophic consortia. 
    more » « less
  5. Abstract Intertidal sands are global hotspots of terrestrial and marine carbon cycling with strong hydrodynamic forcing by waves and tides and high macrofaunal activity. Yet, the relative importance of hydrodynamics and macrofauna in controlling these ecosystems remains unclear. Here, we compare geochemical gradients and bacterial, archaeal, and eukaryotic gene sequences in intertidal sands dominated by subsurface deposit-feeding worms (Abarenicola pacifica) to adjacent worm-free areas. We show that hydrodynamic forcing controls organismal assemblages in surface sediments, while in deeper layers selective feeding by worms on fine, algae-rich particles strongly decreases the abundance and richness of all three domains. In these deeper layers, bacterial and eukaryotic network connectivity decreases, while percentages of clades involved in degradation of refractory organic matter, oxidative nitrogen, and sulfur cycling increase. Our findings reveal macrofaunal activity as the key driver of biological community structure and functioning, that in turn influence carbon cycling in intertidal sands below the mainly physically controlled surface layer. 
    more » « less
  6. In coastal marsh ecosystems, porewater salinity strongly affects vegetation distribution and productivity. To simulate marsh porewater salinity, an integrated, spatially explicit model was developed, accounting for tidal inundation, evaporation, and precipitation, as well as lateral and vertical exchanges in both surface waters and the subsurface. It was applied to the Duplin River marsh, Sapelo Island, USA, over a 3-year period, which covered both drought and wet conditions. Simulated porewater salinity in the low and high marsh correlated with Duplin River salinity, with evapotranspiration and precipitation leading to substantial variations in porewater salinities across seasons, in particular in the high marsh. The model revealed substantial interannual variability in marsh soil conditions, and—due to its process-based approach linked to external forcings—can be used to explore effects of sea level rise and changes in hydrological forcings on marsh soil conditions. 
    more » « less
  7. null (Ed.)